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Abstract

This paper presents the second version of the dialogue system named Alquist com-
peting in Amazon Alexa Prize 2018. We introduce a system leveraging ontology-
based topic structure called topic nodes. Each of the nodes consists of several
sub-dialogues, and each sub-dialogue has its own LSTM-based model for dialogue
management. The sub-dialogues can be triggered according to the topic hierarchy
or a user intent which allows the bot to create a unique experience during each
session.

1 Introduction

In this paper, we present the second iteration of Alquist socialbot, a conversational system designed
to converse coherently and engagingly with humans on popular topics.

Our system focuses on coherent, informative and engaging dialogues centered around the large scale
of topics including pop culture, sports, technology, etc. We have designed the system to be highly
modular and the user experience to be as non-repetitive as possible. We achieve this by engaging in
dialogues that are highly interconnected. The bot switches between topics seamlessly and maintains
awareness of the ever-changing context. We considerably improved the system’s NLU module,
mainly focusing on intent and entity recognition, while employing state of the art methods like
dialogue acts [1].

The Alquist socialbot builds on the experience and knowledge gained from Amazon Alexa Prize
2017 [2]. However, it is a brand new system created from scratch for Alexa Prize 2018. The results
of Alexa Prize 2017 [3] showed that meaningful conversation with a socialbot is possible, however,
there is still a long way to go for artificial intelligence to handle a complex human-like conversation.

In the paper, we first describe the high-level design of the system (Section 2), then we describe each of
the system components in detail (Section 3). We dedicate a section to the dialogue flow and dialogue
design process (Section 4) as it is integral to the success of the socialbot. Finally, we describe the
experiments (Section 5) we performed during the creation of the system and finally summarize our
findings (section 6).
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1.1 Innovations

We propose several improvements in comparison to our bot competing in the Amazon Alexa Prize
2017. The current version of the bot works with small dialogue structures which can be easily
grouped into nodes that we call “topic nodes”. These nodes group the dialogues about the same topic
as opposed to the last year’s version, where there was one fixed tree structure for each topic node.
Current version allows the bot to choose a different path through the topic node for each session.
Moreover, the user is able to start a specific sub-dialogue of the given topic node.

Another innovation is the improved workflow for adding new content. We implemented a custom
web-based editor where the dialogue structure can be created and changed easily. Based on the
structure, the dialogue manager (DM) model is trained, and auxiliary Java code is generated. This
process allows us to divide the dialogue design part and the implementation part (which is not always
necessary).

We present our DM as a novel approach to drive the open-domain dialogue. We have a separate
DM model for each sub-dialogue. This model is inspired by Hybrid code networks [4] which
were originally designed for task-oriented dialogues. Selecting the particular sub-dialogue (and
corresponding DM model) is handled by a topic switch detector and intent detector. The topic nodes
are formed in a tree structure which allows the bot to select similar topics when there is no strict user
initiative. Each of the models used during the dialogue management uses contextual information.

2 System overview

The system consists of several components which are visualized in Figure 1. Each component is
described in detail in Section 3. The system uses AWS lambda function which is connected to Alexa
Skill. The lambda function only sends the requests as is to the Alquist Core component.
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Entity
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Figure 1: The system architecture schema

The core system is a Java application which is connected to each of the remaining components. NLU
module encapsulates several models such as intent detection, entity recognition, entity sentiment,
and dialogue acts. The results of each model can be retrieved by a single request. Hybrid code
network is a module which contains DM models for all sub-dialogues. Topic switch detector is a
model which decides whether the user still wants to talk about a current topic or not. All of these
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four modules are standalone docker containers. This design takes advantage of AWS Code Pipeline1

based continuous integration. The usage of AWS Code Pipeline was inspired by the Cobot which is a
socialbot framework provided for each team competing in the Alexa Prize 2018 by Amazon. The
dotted shadow rectangles behind each docker container showed in Figure 1 illustrate the auto-scaling
ability of each component. By default, each component is launched as a single container. Based on
the CPU and memory usage the additional containers are subsequently launched.

All the information (context) gathered during each dialogue turn is persistently saved in the Dy-
namoDB. The information includes all of the annotations, message, generated response, current topic,
current state, etc. For a better analysis and faster search, the content of the DynamoDB is duplicated
in a Elasticsearch index. The Elasticsearch also contains crawled data such as Washington Post
articles, Reddit content and Microsoft Concept Graph [5].

That last component is an RDF knowledge graph stored in Amazon Neptune. It contains the last
dump of Freebase [6] enriched by our custom data.

2.1 Information flow

The following list describes when the individual components are triggered during the processing of a
single dialogue turn.

1. The request from Alexa Skill is sent to the Lambda function. The request data are passed
to the Alquist Core without any modifications.

2. The Alquist Core receives the request and based on the session ID, it loads the context (up
to 20 previous turns) from DynamoDB. If there is no previous turn (the user just started the
conversation), a welcome dialogue is triggered with an empty context history.

3. The user message is annotated by all of the models in the NLU module and the Topic
Switch Detector is triggered.

4. If the Topic Switch model detects topic switch, a new sub-dialogue is selected based on the
topic nodes assigned to the current entity and intent combination.

5. If the Topic Switch model does not detect topic switch, the bot continues with the previous
sub-dialogue, or it suggests a new one if the previous one is finished.

6. The user message is sent to the Dialogue manager which produces response according to
selected sub-dialogue.

7. Before the pipeline finishes, the bot stores the context in the DynamoDB.

3 System components

3.1 Context

Context is an object holding all relevant information for the current dialogue turn. At the beginning
of each turn, user utterance, user ID and session ID are saved into the object. Each object contains
references of up to 20 previous context objects (retrieved according to the session ID). Note that all
the stored information (NLU annotation etc.) is dialogue turn exclusive. However, context object
contains a nested object called Session Attributes which is propagated from the current turn to the
next one. At the end of each turn, the context object is persistently stored in DynamoDB including all
nested classes such as Session Attributes.

There is a separate object called User Attributes which can store relevant information for a given
user ID. This information can be used across all sessions. This object is stored in a separate table in
DynamoDB.

3.2 Knowledge base

To obtain content for the dialogues, we scrape data from various sources, for example, Washington
Post or Reddit. Washington Post articles are downloaded daily through an API provided by Amazon.

1https://aws.amazon.com/codepipeline
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Reddit posts from the subreddit “Today I learned” are used as trivia about people and other entities.
We designed our knowledge base in order to add structure to this data. We chose the RDF-triples
format to expand it with information already converted to it, namely a dump of Freebase. Data
integration between Freebase and our data (articles from now on) is done as follows: First, each
article is searched for named entities. Articles from certain sources already contain this information,
but the rest needs to be processed with a named entity recognition tool. We use the NLTK library
for this because of its speed and certain features. Once the entities are obtained, they are linked to
their Freebase IDs using a query to an implementation of a Freebase fuzzy label lookup2. Finally, the
articles and Freebase entities are linked using a simple ontology of our own design. The knowledge
base runs on Amazon Neptune and is periodically updated with new articles. It can be queried with
SPARQL query language. One improvement over Elasticsearch, where we stored the data initially, is
the fact that when we look for an article about an entity, we can be sure that it is mentioned there.

3.3 NLU module

NLU module is a single endpoint containing several models such as entity recognition model, intent
detection model, dialogue act detection model, and sentiment analysis model. The results of all
included annotations can be retrieved using a single request, alternatively each annotation result can
be requested individually. Since most of the models take a user utterance as input (except for entity
sentiment analysis), it is better to request all the annotations at once to avoid the network overhead.

3.3.1 Entity recognition

Entity recognition is a task which gives a label for every single word from a given utterance. We use
a inside, outside, begin (IOB) [7] schema commonly used in Named Entity Recognition (NER) task
with an addition of type of entity (e.g. B-movie). The only difference to the traditional NER task is
that we do not require the entity to be a strict named entity which can be mapped, e.g., to a Wikipedia
article. For example, in the sentence I want to talk to you about my life, the word sequence “my life”
is marked as an entity although it is not a proper named entity. This approach allows the bot to start a
dialogue about abstract topics such as “my life”.

Additionally, we want to recognize a correct entity type from the utterances where it is possible.
This type-inference is only based on the current utterance, thus it should be possible for the model
to recognize it. For example, in the sentence: I want to talk about Matrix, our model should label

“Matrix” as a Generic Entity since it is not possible to know that Matrix is a movie without external
knowledge. On the other hand, in the sentence Let’s chat about the Matrix movie, it should label

“Matrix” as a movie.

For the sequence tagging task, we use BI-LSTM-CRF [8] model. The input is a single user utterance
where each word is represented by a word embedding. The embeddings are followed by bidirectional
LSTM layer which is then connected to a fully connected layer. The sentence features extracted by
the previous layers are then fed into the CRF layer. The number of predicted classes is two times
the number of types (one for B and one for I) plus one (for O). As training data, we use a manually
labeled dataset of utterances gathered during conversations with the real users. We use our own
annotation tool to make the process as fast as possible.

3.3.2 Intent detection

Intent detection classifies each utterance into one of the predefined classes. These classes are related
to the sub-dialogues which the bot is capable of talking about. The classes are, for example: “tell
topic”, “change name”, “tell news”, etc. Detected intent combined with recognized entities is used in
the decision which sub-dialogue should be triggered. There is not a strict boundary between entity
and intent during the dialogue design. For example, the sentence Let’s talk about rock music can
be labeled with tell_topic intent and rock music entity or the intent can be tell_about_music and
entity can be rock. Those two approaches are equal as long as we stay consistent. Note that a new
sub-dialogue is triggered based on the entity and intent only if the topic switch is detected (based on
the contextual data) as described in subsection 3.4.

2https://github.com/brmson/label-lookup
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We use multi-channel convolutional neural network [9] as a model for the intent detection. The words
from input utterances are represented as the word embeddings. Embeddings are followed by five
channels of convolutions, followed by a max pooling layer. The last two layers are fully connected
layers. The output of the model is the probability of each intent class. The model is trained on a
dataset which is a combination of the utterances from real conversations and utterances generated
from templates.

As we mentioned earlier, entity recognition and intent detection are highly related. We run a few
experiments including a combined model for both of the tasks. These experiments are described in
section 5.

3.3.3 Dialogue act detection

Dialogue act detection is also the utterance classification task. Unlike the intent detection, the
dialogue act classes are not related to the specific dialogues, but they can be used across various NLP
tasks. The classes describe whether the utterance is a statement, question, acknowledgment, etc. We
use commonly used Switchboard dataset [10] which is a phone call transcription annotated by the
dialogue acts. Original dataset contains over 200 classes which are clustered into 43 classes based on
the predefined rules3. We trained our model using these 43 classes.

We use the same model architecture as for the intent detection. We do not use predicted dialogue
acts directly during the conversations, but we rather use a feature vector which is an output of
the second-to-last fully connected layer. This feature vector is input to the dialogue manager as
described in the subsection 3.5. However, as reported in [1], there is an improvement in dialogue
act detection accuracy when the contextual information is incorporated. We did not include the
contextual information since the model of dialogue manager takes a window of the utterances and
dialogue acts as the input, and it is the only usage of the dialogue acts in the system.

3.3.4 Entity sentiment

Entity sentiment module is tasked with giving the socialbot context for a recognized entity and
forming the socialbot’s opinion on the given entity. For each detected entity we search twitter via
TwitterAPI for recent tweets containing mentioned entity. We perform sentiment analysis on gathered
tweets and compute a mean value from received results. We use this value as a basis for the socialbot’s
initial opinion on the given entity.

For sentiment detection, we first clean the tweet of non-word strings and tokenize it, then convert
the individual tokens to their embedding representation. We use them as an input to a bidirectional
recurrent (GRU) neural network layer. Our model utilizes a dense layer from which we obtain
estimated sentiment. The model then determines the sentiment of the tweet on the scale from 0
(negative) to 1 (positive). We have trained our model on two separate datasets the IMDB sentiment
dataset [11] and the twitter sentiment classification dataset [12]. In the Section 5 we compare the
models trained on the different datasets. We are currently using the model trained on the IMDB
movie review dataset.

3.4 Topic graph

The Topic graph contains a graph structure of topics, sub-dialogues, and their interconnections.
We show the structure of topics in our Topic graph in Figure 2. It consists of topic nodes and
sub-dialogues. Each topic node has assigned one or more sub-dialogues. For example, “Movies”
topic node has assigned sub-dialogues about movies in general, like “Where do you watch movies”,

“What is your the most favorite movie” or “Are you a big movie fan”. The Movie topic node has
assigned sub-dialogues about some specific movie like “Actor starring in the movie”, “Director of
the movie” or “What is your favorite part of the movie”. Each of these sub-dialogues is implemented
as a model in Hybrid code networks.

Topic nodes are connected by oriented edges, which point from more specific to less specific topic
nodes. There is, e.g., an edge from Movie to Movies, or from Director to Movies and Person. If
we detect that the user wants to talk about Steven Spielberg, and we know that he is a director, we
can select any sub-dialogue from Director node and all the nodes which can be reached from the

3https://web.stanford.edu/~jurafsky/ws97/manual.august1.html
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Figure 2: Schema of Topic graph. Yellow nodes contain dialogues about a topic. Green nodes contain
dialogues about an entity of its type. Orange node GenericEntity contains dialogues about entities
with unknown type. Red nodes are special topic nodes containing dialogues about the bot, user, and
Initial chat. These nodes are not connected to the rest of the Topic graph.

Director node (i.e., Person, Movies). The probability of node selection is based on the distance
from the (current) Director node. A shorter distance means a higher probability. If the selected
sub-dialogue ends, the topic graph automatically selects a new sub-dialogue from the Director node
or the connected nodes. This method of active selection of new sub-dialogues keeps the user engaged.
We have a special node we call “GenericEntity” for all entities of unknown type. It is the least specific
topic node. It means that there is no oriented edge from GenericEntity node to any other node. It
contains three sub-dialogues: “Funfact”, “Shower-thought” and “News”. These sub-dialogues do
not require any specific knowledge about the entity. They select the content of sub-dialogues by a text
search of the entity name. This method allows us to maintain a conversation about any existing entity.

There is also a Recommendation topic node. Its purpose is to suggest new topics of the conversation
to the users. This node is used only if users themselves do not specify the topic of the conversation,
or we run out of sub-dialogues for the topic which they requested.

3.5 Dialogue manager

We use modified Hybrid code networks (HCN) described in [4] as our dialogue manager. HCN are
a dialogue manager which combine an RNN with domain-specific knowledge encoded as software
and system action templates. Model’s task is to select the best response based on the input message
and the context of the dialogue. HCN require less training examples compared to other end-to-end
approaches thanks to domain-specific code but also retains the benefits of end-to-end learning. The
model obtained state-of-the-art performance on the bAbI Dialogue tasks [13]. These three properties
(ranking of handmade responses, low data requirements, and end-to-end learning) are the main
reasons why we decided to use HCN as our dialogue manager.

Our modified implementation of Hybrid Code networks consists of following components: input
convolutional neural networks, recurrent neural network, and domain-specific code implementing
text actions, functions, action masks and can start methods.
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Figure 3: Schema of our implementation of Hybrid code networks

The model obtains the input message which is featurized in three ways. Firstly, we use input
convolutional neural network described in [9] with pretrained fastText embeddings [14]. We obtain
the featurized output from second last layer of CNN. The CNN is trained on the training data of
the sub-dialogue. Secondly, we use the architecture of [9] again, but the weights are pre-trained on
sentiment analysis task. The pre-trained weights are frozen during training on the sub-dialogue. We
again obtain the featurization of input message from the second last layer of CNN. Thirdly, we use
the pre-trained model for dialogue act detection, from which we extract the output of second last
layer. The weights of the model are frozen during training.

The featurization variants of input message are concatenated into a single vector. We furthermore
concatenate response class predicted in the previous step. The resulting vector is fed into RNN. The
timesteps of RNN are unusual. Instead of going across the values of the single input vector, the
timesteps go across the input messages. This allows the model to learn the representation of the
dialogue’s context. Our RNN layer consists of LSTM [15] cells.

The vector output of RNN is element-wise multiplied by action mask vector. The action mask
vector consists of zeros and ones. Its purpose is to prohibit some actions by assigning them a zero
probability. The action mask vector is produced by action mask code. It consists of a set of rules.
They prohibit usage of responses which don’t directly follow the last used response in the dialogue.
The element-wise multiplied vector is fed to softmax layer which computes probabilities of responses.
We select the response with the highest probability.

There are two types of responses, text responses and functions. Text responses are directly returned
as the response, no more processing is required. The functions are represented as some code which
needs to be executed. The result of the code must be the class of the following response, which is a
text response or another function. The function code can meanwhile arbitrarily modify values saved
in the context.

The text response may contain text actions. Such response can be “Movie was directed by
{say_director}”, where the text action is {say_director}. The text actions are replaced by text
actions code before they are presented to the user. The text action code can also modify values saved
in the context.

The last part of our HCN implementation is can start code. It determines whether the dialogue can be
started based on the values saved in the context. For example, if the dialogue requires the director’s
name, and the name is unknown (e.g., not found in DB), the can start code flags the dialogue as not
able to start. Another reason for this flag can be that the sub-dialogue has been executed previously
and we do not want to repeat it. In such case, the topic graph has to select different dialogue to
execute.

3.5.1 HCN training

We found the best set of hyperparameters for the HCN model on the validation set of bAbI Dialogue
Task 6 by Bayesian hyperparameter optimization prior to the training. The best parameters for several
architectures are presented in Table 2. We generate a dataset of all possible transitions through the
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dialogue, which was created in our graphical editor. We split the dataset into training, validation
and testing examples. One example is equivalent to one whole transition through the dialogue.
Training part contains 80% of examples, and validation and testing both 10% of examples. We use
three-fold cross-validation on training examples to find the best number of training epochs. We limit
the maximum number of epochs to 12. We train the model on whole training dataset for the number
of epochs determined by the cross-validation.

3.6 Topic Switch detector

Figure 4: Schema of Topic Switch detector

Topic Switch detector is a component which determines whether the user wants to switch the topic of
the conversation. If such request is recognized, we switch the topic of the conversation according to
the detected intent and recognized entity. We use this model on top of the intent detection because a
decision to switch the topic must be conditioned on the context of the conversation. Intent detection
works only with the recent message. It is not sufficient, because message “I like pop music.” can have
different topic switch labels in different contexts. If socialbot asks user “What do you like?”, we want
to switch the topic to sub-dialogues about music. However, if we are in the middle of the dialogue
about favorite music genre and the socialbot asks user “Which music genre is your favorite?”, we
do not want to switch topic because it leads to a restart of the conversation about music. But intent
detector returns intent “Music” for message “I like pop music.” in both contexts. This is the reason
why we use Topic Switch detector which is trained to make decisions not only on recent message but
also on the context of the conversation.

The Topic Switch detector’s model uses an architecture similar to the HCN model. It consists of two
input CNNs [9] and an RNN. Model’s inputs are the last dialogue turn’s response and the current
user’s message. The input CNNs create vector representations of both inputs which are concatenated
and passed to LSTM and softmax layer. Two output classes of the softmax layer correspond to the
probability of user wanting to switch the topic and not wanting to switch the topic of dialogue.

The topic switch is trained on sub-dialogues from the Topic graph. We generate artificial conversations
from training data for individual dialogues, in which we mix training examples of intent detection.
We mark the turns into which we mix the intent example by class one which indicates the topic switch
and the rest of turns by class zero. The model learns to predict these labels.

4 Work-flow of dialogue creation

One of the main features which we optimize for Alexa Prize 2018 was the complexity of adding new
dialogue to the socialbot. The complexity of adding a new dialogue was fairly high for last year’s
Alquist due to the fact that dialogues were represented as state graphs. Not only the content of the
dialogues but also the inner decision logic had to be hand-made. This added a significant amount of
work, which limited the number of topics we were able to include in time. We were able to include
27 topics to this year’s Alquist as opposed to only 17 topics in case of the previous year. This number
of topics was achieved by a smaller team of four people instead of five and also in shorter time as
Alexa Prize 2017 started in November 2016 and Alexa Prize 2018 started in February 2018. This was
accomplished thanks to two major innovations, which are the Hybrid code networks and graphical
dialogue editor. Hybrid code networks significantly reduced the amount of work required to create
inner logic. The graphical dialogue editor simplifies the development of dialogue’s content.
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In the next sections, we will go through the process of adding sub-dialogue about writer’s popularity.
This sub-dialogue can be executed if a user wants to talk about any writer. Such dialogue will be one
of many sub-dialogues a writer.

4.1 Adding topic node to Topic graph

The first step is to add a topic node Writer to the Topic graph. This will enable us to add multiple
sub-dialogues about any writer and transition between them. We represent each topic node as a
YAML file, which contains the list of sub-dialogues and node’s parents. We add writer_popularity
sub-dialogue to the list of sub-dialogues. We add topic nodes Person and Books to its parents.
Connection to Person and Books nodes allows us to smoothly transition to sub-dialogues assigned to
these nodes, which contains dialogues of related topics to Writer.

Figure 5: The sub-dialogue about writer’s popularity implemented in graphical dialogue editor. Green
nodes are Bot nodes, blue nodes are User nodes and red nodes are Function nodes.

4.2 Creating content of sub-dialogue in graphical dialogue editor

The next step is to create structure and content of the dialogue in the graphical dialogue editor. We
create it by placing and connecting Bot, User and Function nodes. Bot nodes represent the class of
bot’s responses. User nodes represent the possible user’s messages, which we use as the training
examples for Hybrid code networks. Initially, we have to come up with the possible user’s messages,
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but later we can enhance them by data from the real traffic. Both User and Bot nodes can contain
multiple messages or responses. Function nodes contain code that decides the next class of response.

Finished dialogue is later converted to training examples for HCN. We do it by generating all possible
transitions through the dialogue. The training script for HCN generates the files with model’s weights,
responses, and Java code templates of can start, functions, text actions and action masks methods.
The file containing the model’s weights and responses are uploaded to S3 bucket, and the rest of the
files is moved to Java core.

4.3 Implementing code templates

We have to implement Java code templates in the Java core. The first template is a can start method.
The purpose of this method is to signalize whether the dialogue can be executed. We prepare all the
data which the dialogue needs in this method, and we check that the dialogue was not used before. In
the case of our dialogue about writer’s popularity, we check if we use this dialogue for a particular
writer for the first time, and we make a request to retrieve the number of writer’s fans from a database.
The result of the request is saved to the context. If we use the dialogue for the first time and the
request returns the count of fans successfully, the can start method signalizes that the dialogue can be
executed.

The code inside of function templates decides which response class to use next based on the hand-
written rules. It is an optional supplement to the decisions made by HCN. There are decisions in the
dialogues, which depend on the external knowledge and not on the user’s message. Such decisions
are impossible to learn and must be implemented in code. We use the function to redirect the flow of
the dialogue according to the number of writer’s fans in our example. This can be implemented as a
simple if-then-else rule comparing the value to some threshold.

String replacement is in the center of the text actions. They are used to include information to
responses, which can’t be included at the time of dialogue creation. Such information is usually
obtained from the database during runtime and inserted into the response. In our example the response
can be “Writer has {say_fans} fans.”, where the text action is {say_fans}. The code implemented in
text action is responsible for replacing {say_fans} by actual value. This value is usually retrieved
from the context, to which the code of can start had saved it before the dialogue was executed.

The last code template is action mask. This template prevents HCN from predicting non-logical
response classes (those which are not connected in the designed sub-dialogue graph). Action mask is
completely generated by the training script of HCN. The code is fully customizable in theory, but we
rarely do any changes to it in practice.

4.4 Intent and entity annotation

To adapt the intent and entity models, we are constantly adding new samples into our training data
based on the conversation logs. It is simple to annotate the intent since it is a single label for each
utterance. On the other hand, for entity recognition, each word from the utterance needs to be labeled
by the IOB plus entity type labels. To simplify this process, we created a web-based annotation
tool. The user interface of the tool is shown in Figure 6. The tool allows us to select an entity type
and the just click on the words to annotate them. When the model is trained, it can be used for the
label suggestion during the actual annotation process. Then, we can accept whole labeling or correct
mistakes, save the labeled data and retrain the model.

4.5 Retraining Topic Switch detector

The last step is necessary only if we added new intent. Otherwise, it is optional. The step is to retrain
the model of Topic Switch detector to correctly detect the user’s desire to switch the topic. The
training script of Topic Switch detector downloads all dialogues from S3 bucket and takes training
examples from the intent recognition. It combines these two datasets into training data. The trained
model’s weights are then uploaded to S3 bucket.
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Figure 6: UI of our entity labelling tool

4.6 Final remarks

These are the only necessary steps which we need to take in order to add new dialogue. Most of
the tasks are automatized or consists of creative work. The only technically challenging part is the
coding of the java code templates. The work to add dialogue can be thus divided into a creative and a
technical part. The creative part can be done by dialogue designer with no programming experience.
The knowledge of programming is needed only for the technical part.

5 Experiments

5.1 Intent and Entity

We have experimented with several models for the intent and entity tasks. We trained separate models
for each task and compared it with the combined model which has outputs for both intent and entity.
We had 8,052 samples for the intent detection and 3,494 samples for the entity recognition at the time
of writing this paper. We are continuously annotating new samples during the bot development. Most
of the samples are gathered from dialogue logs. At the beginning of the development, a small portion
of samples was generated from templates.

The models for entity and intent are described in Subsection 3.3.1 and 3.3.2 respectively. The
combined model is a modification of the entity model. It has two stacked BI-LSTM layers. The last
state of the first layer is the intent output and the sequence output of the second layer is fed into a
dense layer which is followed by CRF.

We tried three different embeddings for each task, and each test was triggered ten times. We used
GloVe [16] with 50 and 300 dimensions a custom fastText embeddings with 100 dimension. The
results are shown in Table 1.

It is not a big surprise that the models with smaller embeddings are trained faster. On the other hand,
there is no such a big difference in training duration between GloVe300 and fastText. GloVe300
vectors are slightly better for intent detection whereas Fasttext seems to be better for entity recognition.

5.2 Dialogue manager

We evaluate three architectures of dialogue manager which are inspired by Hybrid code networks.
Moreover, we compared the impact of using word2vec and fastText embeddings for each architecture.
We evaluate the turn accuracy and dialogue accuracy of the models on bAbI Task 6 dataset and
Alquist conversational dataset.
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Table 1: Testing results of intent, entity, and combined models. There are three models for each task
which shares the same architecture, but they use different embeddings. The accuracy and sentence
error rate fields contain mean value and standard deviation across 10 measurements. The results for
the combined task contains values for the intent task/values for the entity task. The sentence error
rate is the metric applied only for the entity recognition and shows how many of the sentences have
at least one misclassified token.

Model Accuracy Sentence error rate Training time

Intent
GloVe50 91.6%± 0.9 - 37 sec
GloVe300 94.8% ± 0.4 - 2 min 10 sec
FastText 94.7%± 0.4 - 47 sec

Entity
GloVe50 98.6%± 0.1 17.0%± 1.7 1 min 14 sec
GloVe300 98.7%± 0.2 17.6%± 1.7 1 min 53 sec
FastText 98.8% ± 0.2 14.9% ± 1.8 1 min 18 sec

Combined
GloVe50 93.0%± 0.5 / 98.2%± 0.2 - / 21.1%± 2.1 3 min 28 sec
GloVe300 95.0% ± 0.4 / 98.3%± 0.2 - / 21.3%± 2.5 5 min 7 sec
FastText 93.5%± 0.4 / 98.9% ± 0.2 - / 14.2% ± 2.4 3 min 42 sec

Figure 7: Schema of Hybrid code network

5.2.1 Tested architectures of dialogue manager

The first tested architecture of dialogue manager is the same as an architecture of HCN [20]. It uses an
average of word embeddings, bag-of-words vector and additional features as inputs. We concatenate
these features and pass them to the LSTM layer. We element-wise multiply the output of LSTM layer
by the vector of action mask. We pass this result to softmax function and select the response with the
highest probability. The schema of architecture is in Figure 7. The second architecture uses LSTM
input layer instead of the average of word embeddings and bag-of-words vectors. It is visualized in in
Figure 8. The third architecture uses convolutional input layer inspired by [9]. The schema of this
architecture is in Figure 9.

5.2.2 Datasets

The Dialog bAbI Task [21] Data is a dataset of conversations from restaurant reservation domain. It
is used to test end-to-end dialog systems in a way that favors reproducibility and comparisons and
is lightweight and easy to use. The dataset is divided into six tasks with increasing difficulty. We
use task six because it is the only task which contains records of real-world conversations between
humans and chatbot. It contains noisy and hard to learn dialogues due to voice recognition errors and
non-deterministic human behavior. It is an ideal benchmark because we face the same challenges in
Alexa Prize. The dataset contains 56 response classes, and it is split into 3,249 training dialogues,
403 validation dialogues, and 402 testing dialogues.

The Alquist conversational dataset is our private dataset collected from our previous version of
socilabot competing in Alexa Prize 2017. The dataset consists of 37,805 dialogues between the user
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Figure 8: Schema of Hybrid code network with recurrent input layer

Figure 9: Schema of Hybrid code network with convolutional input layer

and the socialbot from the domain of books. There are 344,464 message-response pairs in total. The
average length of dialogues is 9.11 pairs, the median is 7 pairs, and there are 23,633 unique responses.
The dataset is also noisy and hard to learn because it contains voice recognition errors and part of the
messages comes from uncooperative users. Messages from uncooperative users are hard to interpret
or out of the domain of books. All of 23,633 responses can be clustered into 30 semantically unique
responses. This reduction can be achieved thanks to the fact, that dialogues were represented as state
graph. Each node in state graph correspondences to one of 30 semantically unique responses.

Table 2: Set of best hyperparameters for each model founded by Bayesian hyperparameter optimiza-
tion on the validation set of bAbI Dialogue Task 6 and achieved Turn accuracy

Model

Hyperparameter Word2vec Word2vec
+CNN

Word2vec
+RNN fastText fastText

+CNN
fastText
+RNN

LSTM size 85 109 219 55 245 505
Convolutional filters - 6 - - 21 -

LSTM dropout 0.92 0.79 0.74 0.85 0.80 0.94
Input LSTM dropout - - 0.91 - - 0.97

Convolutional dropout - 0.84 - - 0.72 -
Fully connected dropout 0.59 0.93 0.98 0.82 0.79 0.76

Learning rate 0.001 0.005 0.00005 0.008 0.0001 0.0003
Activation function tanh tanh relu relu relu relu

Input activation function - - tanh - - tanh
Adam epsilon 1E-8 0.1 1E-8 1E-8 1E-8 1E-8
Adam beta1 0.5 0.5 0.9 0.9 0.5 0.5

Turn accuracy 71.3% 70.4% 65.5% 69.4% 71.5% 68.0%
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Table 3: Testing accuracy of Hybrid code networks models

bAbI6 Alquist
Model Turn Acc. Dialogue Acc. Turn Acc. Dialogue Acc.

Bordes and Weston (2017) [13] 41.1% 0.0% - -
Liu and Perez (2016) [17] 48.7% 1.4% - -

Eric and Manning (2017) [18] 48.0% 1.5% - -
Seo et al. (2016) [19] 51.1% - - -

Williams, Asadi and Zweig (2017) [4] 55.6% 1.9% - -
fastText 57.6% 0.8% 86.9% 51.7%

fastText+CNN 58.9% 0.5% 90.6% 63.0%
fastText+RNN 54.9% 0.3% 80.6% 40.5%

word2vec 57.4% 0.4% 92.2% 68.0%
word2vec+CNN 56.3% 0.1% 92.6% 67.8%
word2vec+RNN 54.6% 0.1% 83.9% 45.2%

Table 4: Sentiment values for entities with general negative connotations

Entity IMDB data sentiment140 data

terrorism 0.38 0.53
Hitler 0.28 0.64
murder 0.24 0.38

5.2.3 Results

We found the best set of hyperparameters for each architecture on the validation set of bAbI Dialogue
Task 6 by Bayesian hyperparameter optimization. They are presented in Table 2. We trained the
models with the best set of hyperparameters for 12 epochs on both datasets. The best model regarding
turn accuracy on bAbI Task 6 dataset is model using convolutional input layer and fastText embedding
vectors, which outperformed the baseline [4]. This model achieved turn accuracy of 58.9%. The
best model regarding turn accuracy on Alquist conversational dataset is model using convolutional
input layer and word2vec embedding vectors, which achieved turn accuracy of 92.6%. The complete
results are presented in Table 3.

5.3 Sentiment

We have trained our sentiment model separately on two different datasets the IMDB movie review
dataset [11] and the sentiment140 dataset [12]. The IMDB dataset is a dataset containing long-form
movie reviews with star ratings whereas the sentiment140 dataset contains tweets that have been
annotated as positive or negative based on used emotes.

The model reached 0.90 accuracy on train set and 0.88 on the validation set for the IMDB dataset,
and 0.84 accuracy on train set and 0.83 accuracy on the test set for the sentiment140 dataset.

We compared the models to see how do the detected sentiments differ for tweets containing entities
recognized by our system. From the figure 10 it is clear that the model trained on sentiment140 data
heavily skews towards positive sentiments for various entities. While we believe that could be helpful
in order to keep interactions with user positive, the model often fails to recognize desired negative
sentiments for serious and generally negative topics (see Table 4). Due to this, we are currently using
the model trained on the IMDB dataset.

5.4 AB testings

We performed several AB testings during the competition, two of which brings interesting results.
The first AB testing measured the impact of length of initial chat. The second measured impact of the
active selection of dialogues.
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Figure 10: The figure shows the histogram of detected entity sentiments for both trained models.
Sentiment value 0 translates to the most negative and sentiment value 1 as the most positive.

5.4.1 Initial chat

The first AB testing compared two variants of initial chat which starts all conversations. The initial
chat of A variant contained three dialogues: “What’s your name?”, “How are you?” and “What are
your hobbies?”. We added five more dialogues in the B variant: “How is your family doing?”, “Do
you plan any vacation?”, “How is it going at work?”, “Do you have any pet?” and “Have you tried
other socialbots?”. The B variant contained eight dialogues in total and was substantially longer.
Our hypothesis was that longer initial chat would lead to longer conversations. The AB testing was
active from July 1 to July 7.

Both variants have the same weight of 50%, and we collected the results from 906 dialogues for A
variant and 883 dialogues for B variant. We included only dialogues for which users gave a rating.
We present the results in Table 5. Both variants achieved nearly identical results in all metrics. The
initial hypothesis was not confirmed. We kept the variant A which contains only three dialogues.

Table 5: AB testing of length of initial chat

Avg Feedback
Rating

Avg Duration
of Conversations

Avg Number
of Dialog Turns

Variant median 90th Percentile
Three dialogues (variant A) 3.03 2:54 13:18 13.1
Eight dialogues (variant B) 3.01 2:55 13:18 13.1

5.4.2 Paraphrasing

The Paraphrasing AB test measures the effects of paraphrasing. Paraphrasing is a restatement of the
user’s message which we prepend to the response. The paraphrasing is implemented as a collection
of rules which transforms the message into paraphrased form. These rules substitute “you” for “I”,
“your” for “my”, “if I am” for “are you” or “your parents” for “my mum and dad” for example. These
rules are applied only if the message contains word “I” or “you”, its length is between two and nine
words and with 50% probability.

We test two variants. Variant A does not use paraphrasing while Variant B does. Both variants were
applied to 50% of users. We collected 3730 dialogues for variant A and 3681 for variant B. We
include only dialogues for which users provided a rating. The results are presented in Table 6. The
result shows that paraphrasing increases user rating.
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Table 6: Paraphrasing AB test

Variant Avg Feedback
Rating

Paraphrasing off (variant A) 3.49
Paraphrasing on (variant B) 3.53

5.5 Amount of trivia

Amount of trivia AB test measures the effect of the number of fun facts, shower thoughts and news
which we present to a user in a row. We test three variants. Variant A allows only single trivia
dialogue in a row. Variant B allows two trivia dialogues following each other. Variant C allows three
trivia dialogues in a row. We collected 1569 dialogues for variant A, 1607 dialogues for variant B
and 1513 dialogues for variant C. We include only dialogues for which users provided a rating. The
results are presented in Table 7. The result shows that a smaller number of trivia dialogues in a row
increases user rating.

Table 7: Amount of trivia AB test

Variant Avg Feedback
Rating

Trivia amount 1 (variant A) 3.47
Trivia amount 2 (variant B) 3.44
Trivia amount 3 (variant C) 3.42

5.5.1 Entity switching

The entity switching feature was intended to suggest a new entity to talk about in case the dialogues
about the current entity were about to run out. This should prolong the conversation by introducing
variety instead of piling further and further pieces of trivia on the user. The new entities were
chosen from those included in already discussed news articles or trivia so as to be related to the
previously used entities, i.e., if the bot read an article about Michael Jackson to the user, and that
article mentioned David Bowie as well, the bot could suggest changing the topic of conversation
from Jackson to Bowie. The entities related to the article were obtained beforehand, either having
been already provided in case of Washington Post articles or by using Named Entity Recognition
techniques on the pieces of trivia. The relations between articles and entities were stored in our RDF
knowledge base then retrieved at runtime using a SPARQL query.

We experimented with two variants of this test. In the first variant, the suggestions were never made.
In the other variant, the suggestion was made after reading the article although not every time an
article was read, only in about 30% of cases. Both variants had an equal probability of 50% of
happening. This testing was active from October 12 to October 15. Variant A was seen by 3549 users
and the variant B by 3645 users. The average rating for each variant is shown in Table 8.

Table 8: AB testing of entity switching

Avg Feedback
Rating

Variant
Three dialogues (variant A) 3.55
Eight dialogues (variant B) 3.51

6 Conclusion

We described the second version of the conversational bot Alquist. Even though the goal of the Alexa
Prize competition 2018 is the same as in 2017, the system has been redesigned which helped us to
develop more engaging conversations with less effort. Based on the experience gathered during the
previous year, we have started to focus on the individual topics and the corresponding sub-dialogues.
We proposed a novel approach to dialogue management by creating a separated model for each
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sub-dialogue. On top of that, the system is driven by recognized entities, intents and topic switch
detection. Every model is created by generated data at the beginning, allowing us to fine-tune it
later according to the real traffic. Each process is designed to be as simple as possible using custom
web-based design tools.

The described modification of Hybrid code networks proved to be an efficient model for dialogue
management by outperforming the state-of-the-art architecture on bAbI dialogue task 6. Thanks to
the visualization of real user traffic within the designed tree structures of sub-dialogues, we are able
to discover unexpected utterances and path inside the dialogues, and we can easily adapt existing
models to handle them.
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