

US 20210129291A1

(19) United States

(12) **Patent Application Publication**
Chen

(10) Pub. No.: US 2021/0129291 A1

(43) Pub. Date: May 6, 2021

(54) **SAND SOURCE SELECTING STRUCTURE
FOR A SANDBLASTING GUN**

(71) Applicant: **LEMATEC CO., LTD**, Taichung (TW)

(57) **ABSTRACT**

(72) Inventor: **Vic Chen**, Changhua (TW)

(21) Appl. No.: 16/673,142

(22) Filed: Nov. 4, 2019

Publication Classification

(51) Int. Cl.

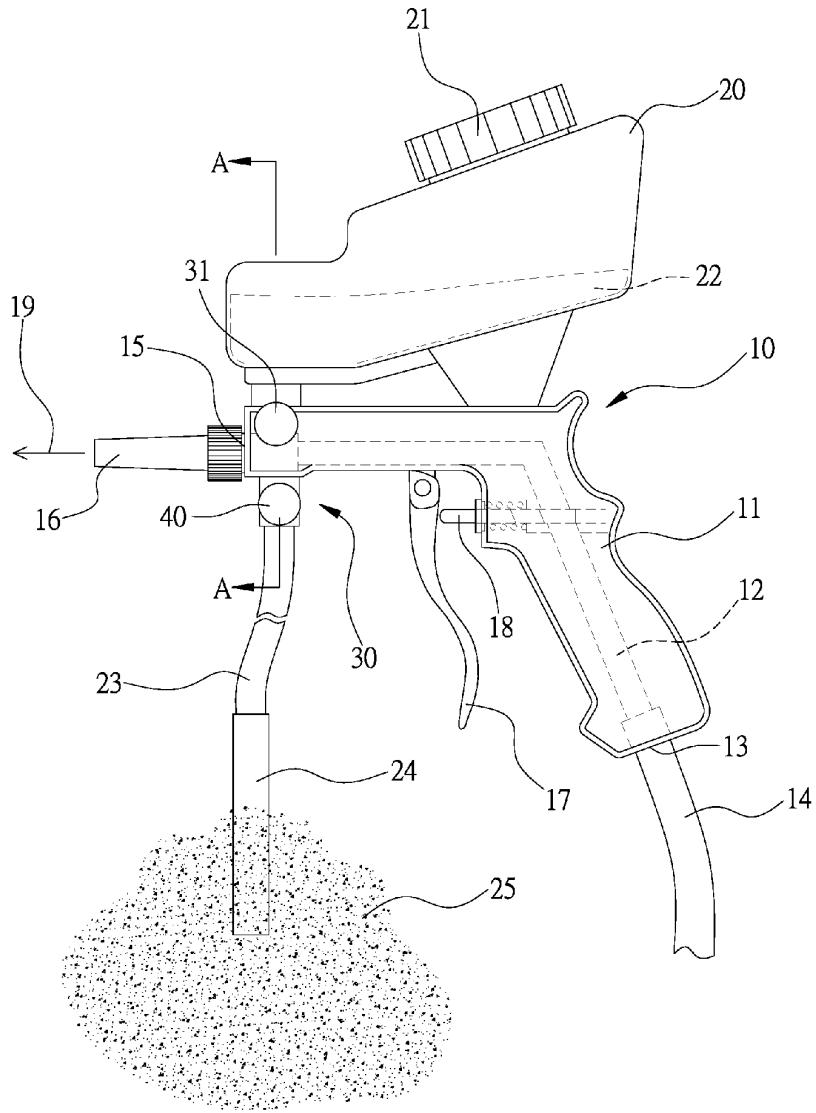
Int. Cl.
B24C 11/00

B24C 11

B24C 5/02
B24C 7/00

(2006.01)

(2006.01)


(2006.01)

A sand source selecting structure for

a main body; a channel provided in the main body, for

(2013.01); **B24C 5/02** (2013.01)

A sand source selecting structure for a sandblasting gun has a main body; a channel provided in the main body, for passing a high pressure gas; at least two sub-channels provided in the main body respectively connected to the channel; a sandbox mounted on the main body connected to the channel through each of the sub-channels; at least one supply tube; a first control valve installed in the main body, for connecting the sandbox and at least one of the sub-channels of the channel; and a second control valve installed in the main body, for connecting the channel and another sub-channel of the supply tube. Therefore, the combination of the first control valve and the second valve provides a selecting structure, which can offer different sand supply sources.

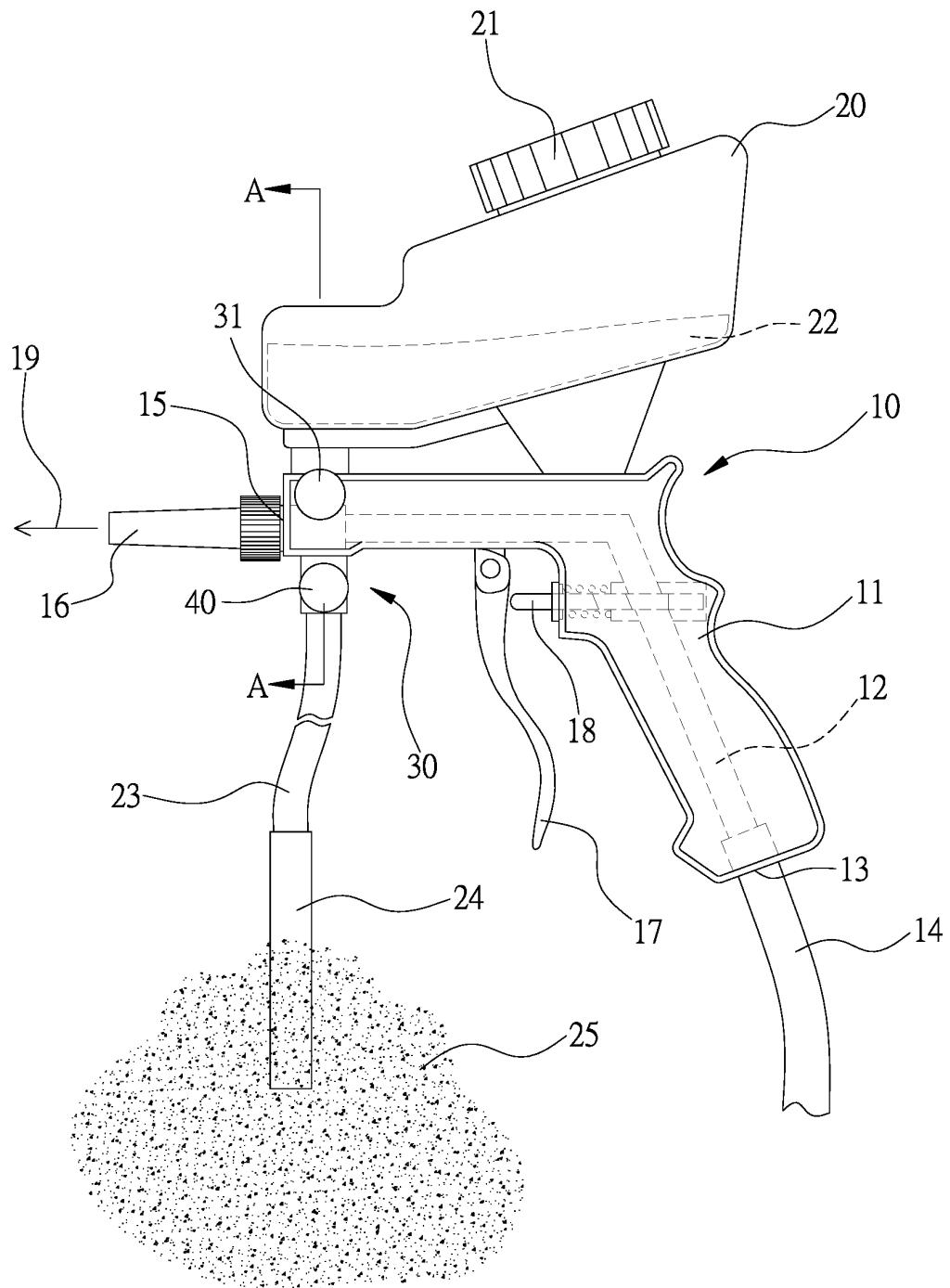


Fig. 1

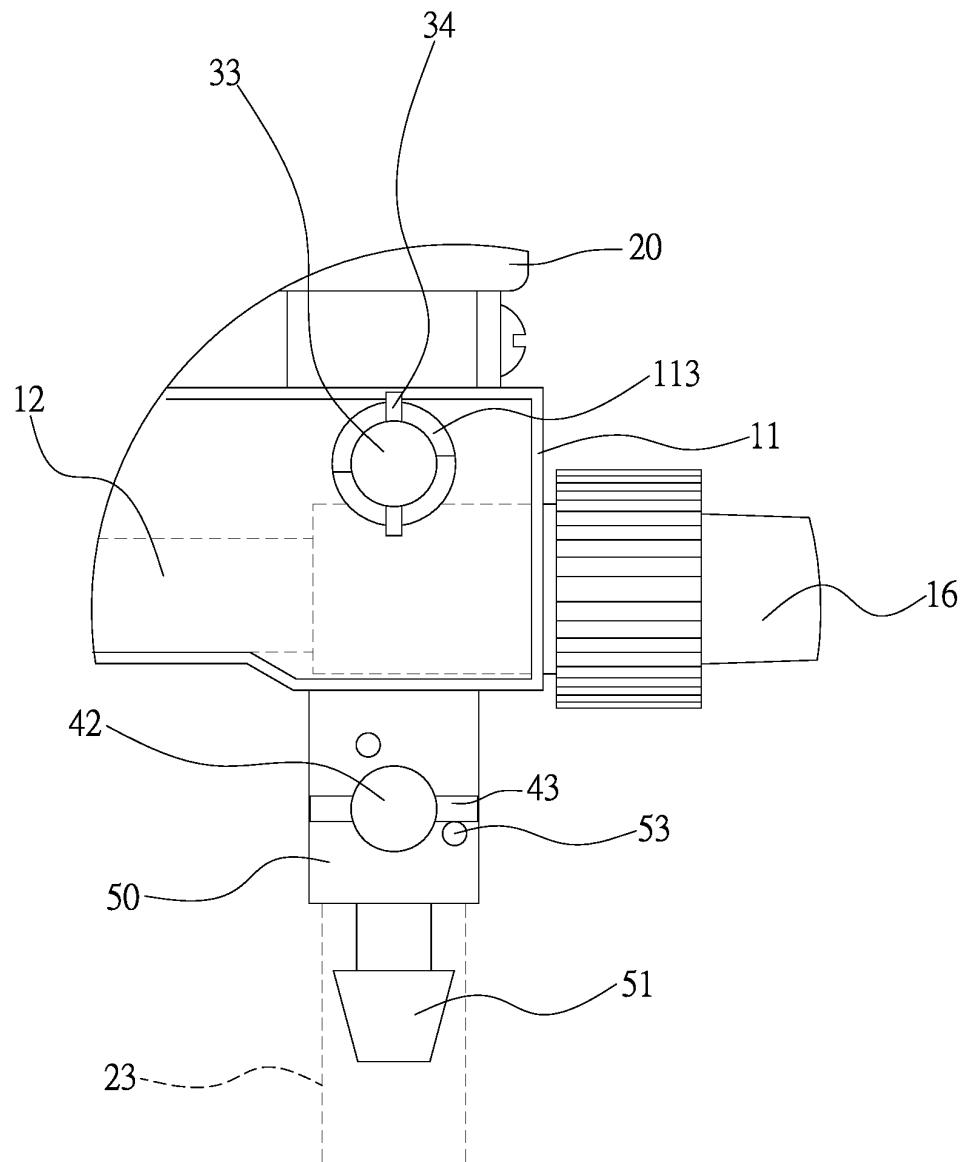


Fig. 2

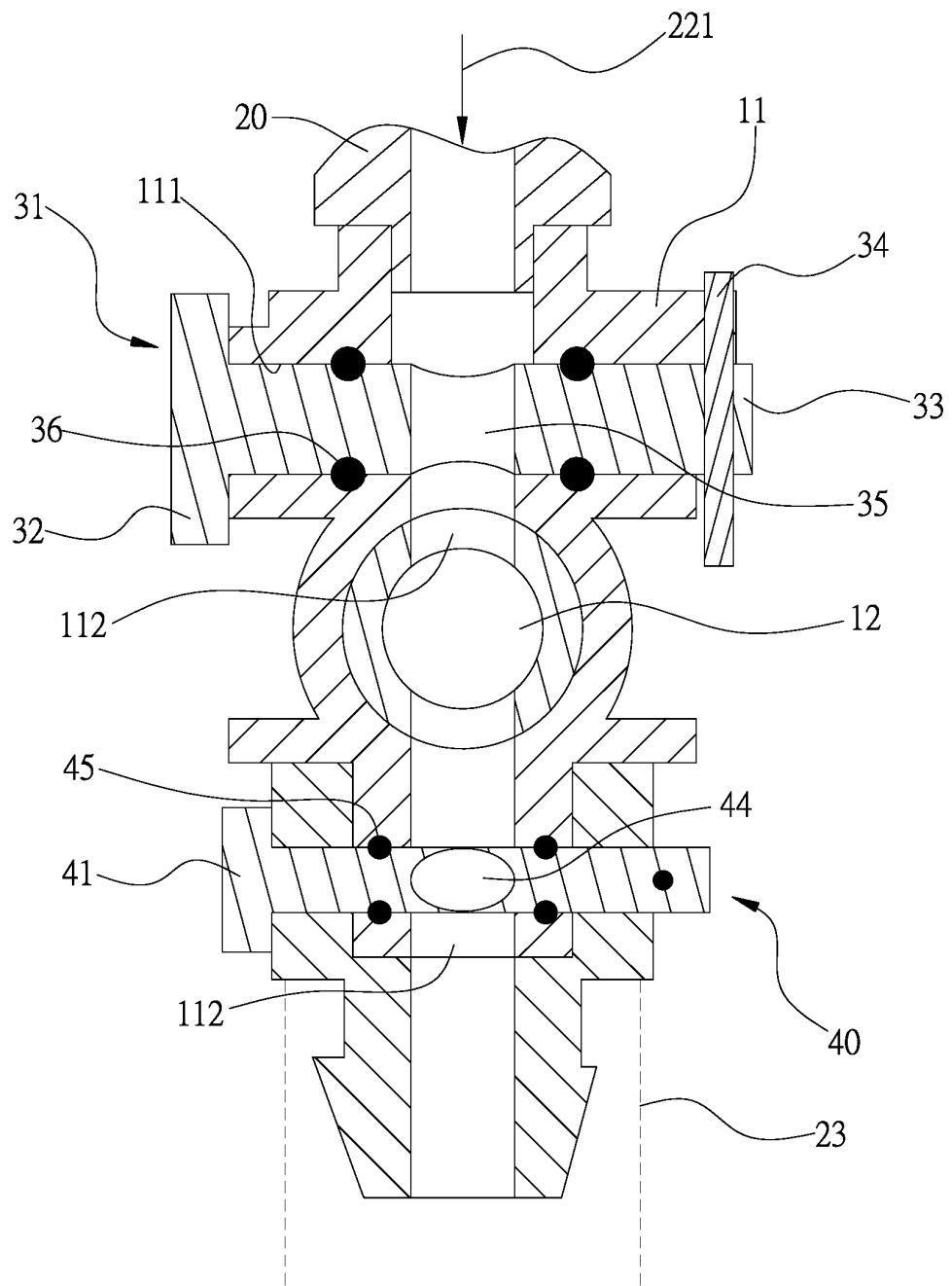


Fig. 3

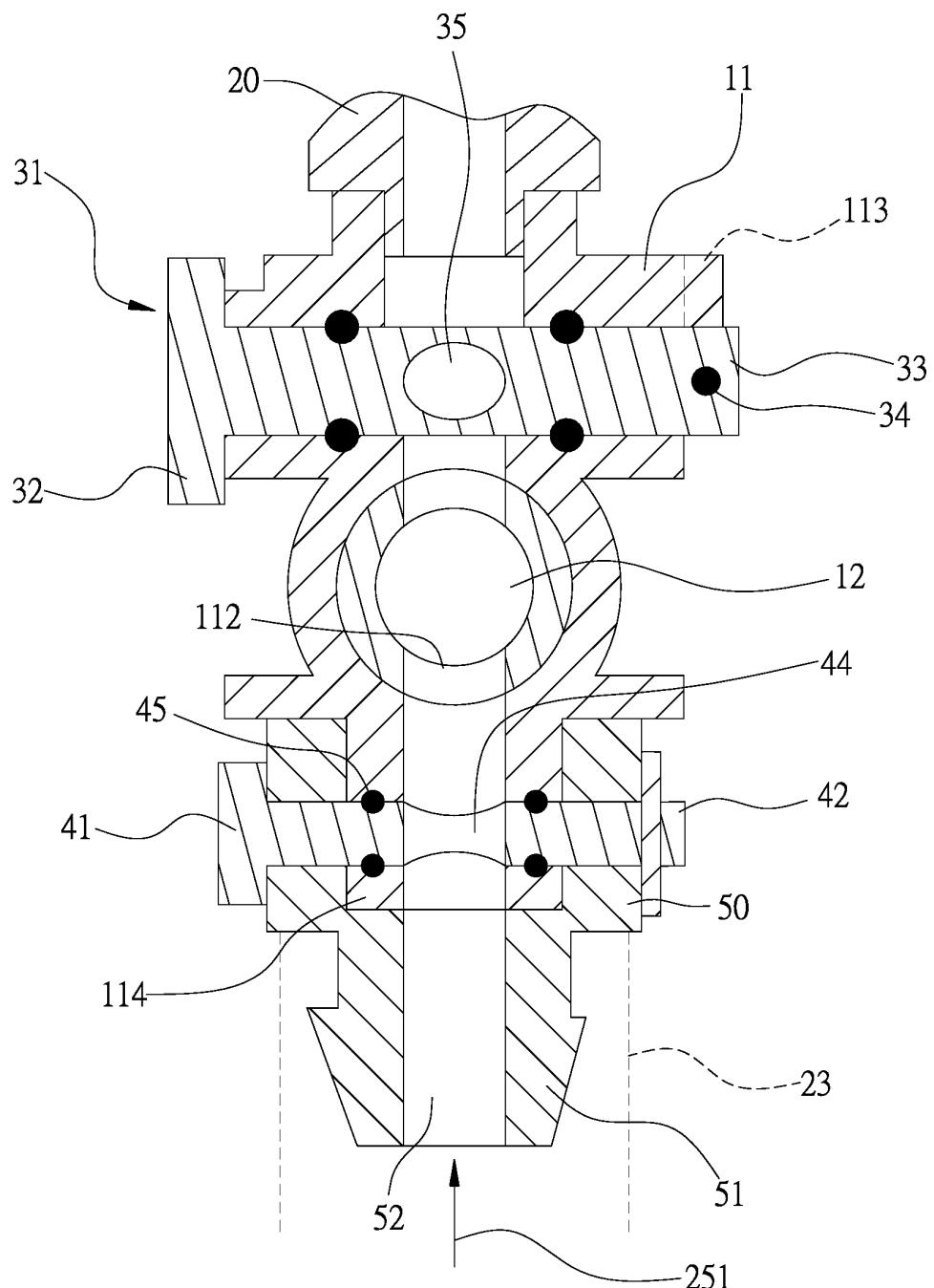


Fig. 4

SAND SOURCE SELECTING STRUCTURE FOR A SANDBLASTING GUN

BACKGROUND OF INVENTION

Field of Invention

[0001] The present invention relates to a sandblasting gun, and more particularly to a sand source selecting structure for a sandblasting gun.

Description of the Related Art

[0002] Typical sandblasting guns spray some sand particles on the surface of a metal workpiece by high-pressure gas to perform surface treatment such as rust removal and dustproof, thereby preventing water molecules or impurities from adhering to the surface of the metal and preventing the metal workpiece from being rusted or damaged.

[0003] For larger metal workpieces, sandblasting guns require more sand, and smaller metal work pieces emit less sand.

[0004] However, typical sandblasting gun is equipped with a sandbox, and the sandbox obtains a fixed amount of sand and cannot increase the amount of sand easily.

[0005] Therefore, it is desirable to provide a sand source selecting structure for a sandblasting gun to mitigate and/or obviate the aforementioned problems.

SUMMARY OF THE INVENTION

[0006] An objective of present invention is to provide a sand source selecting structure for a sandblasting gun, which is capable of improving the above-mentioned problems.

[0007] In order to achieve the above mentioned objective, sand source selecting structure for a sandblasting gun has:

[0008] a main body;

[0009] a channel provided in the main body, for passing a high pressure gas;

[0010] at least two sub-channels provided in the main body respectively connected to the channel;

[0011] a sandbox mounted on the main body connected to the channel through each of the sub-channels;

[0012] at least one supply tube;

[0013] a first control valve installed in the main body, for connecting the sandbox and at least one of the sub-channels of the channel; and

[0014] a second control valve installed in the main body, for connecting the channel and another sub-channel of the supply tube.

[0015] Therefore, the combination of the first control valve and the second valve provides a selecting structure, which can offer different sand supply sources.

[0016] Other objects, advantages, and novel features of invention will become more apparent from the following detailed description when taken in conjunction with the accompanying drawings.

BRIEF DESCRIPTION OF DRAWINGS

[0017] FIG. 1 is a structure plan view of a preferred embodiment for use with a sandblasting gun according to the present invention.

[0018] FIG. 2 is a plan view of another angle of the selecting structure.

[0019] FIG. 3 is a cross-sectional view along a line A-A of FIG. 1.

[0020] FIG. 4 is an action drawing for selecting a sand source.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

[0021] Please refer to FIG. 1. A sandblasting gun 10 has a main body 11, and the main body 11 has a handgun-shaped profile. The main body 11 has a channel 12, and the channel 12 is provided with an entering end 13 and an exiting end 15, and the entering end 13 and a high pressure gas device (such as an air compressor) are connected by a gas pipe 14. A detachable nozzle 16 is connected with the main body 11, and the nozzle 16 is connected to the exiting end 15 of the channel 12.

[0022] A gas valve 18 is installed onto the main body 11 to intercept the channel 12. A trigger 17 is mounted to the main body 11 and able to swing back and forth, and the trigger 17 controls the gas valve 18 to keep the entering end 13 and the exiting end 15 of the channel 12 clear, so that the high pressure gas in the gas pipe 14 enters into the channel 12. With the guidance of the nozzle 16, a gas flow 19 is injected out of the main body 11 outside.

[0023] As shown, a sandbox 20 is secured to the main body 11 for receiving some sand particles 22. A cover 21 locks the sandbox 20 to prevent the sand 22 from exiting the sandbox 20.

[0024] Further, a selecting structure 30 is composed of a first control valve 31 and a second control valve 40, and the first and second control valves 31, 40 are mounted on the main body 11 adjacent to the nozzle 16.

[0025] Please refer to FIG. 2 with FIG. 3. The coupling relationship between the main body 11 and the first control valve 31 is described in following detail. The two sub-channels 112 are formed inside the main body 11, and the sub-channels 112 are connected to the channel 12 of the main body 11 respectively. Secondly, the first control valve 31 has a first valve rod 33, the first valve rod 33 is provided with a knob 32 and a first through aperture 35. The knob 32 is formed at one end of the first valve rod 33, and the first through aperture 35 connects both sides of the first valve rod 33.

[0026] When one end of the first valve rod 33 passes through an assembly aperture 111 of the main body 11, a pin 34 is inserted into a portion of the first valve rod 33 that is exposed outside the main body 11, which prevents the first valve rod 33 from leaving the main body 11 and not affect the knob 32 to drive the first valve rod 33 to rotate around the main body 11. In addition, a set of the first O ring 36 is embedded in the surface of the first valve rod 33 around the first through aperture 35 while contacting the main body 11 to form a wall for the assembly aperture 111, thereby providing sealing effect to prevent pressure leakage.

[0027] In a preferred embodiment, the main body 11 further has a baffle 113 protruding out from the surface and disposed on two sides of the first valve rod 33, and the baffle 113 blocks the pin 34 and limits the first valve rod 33 to only move in longitudinal and lateral positions.

[0028] When the first valve rod 33 is at the longitudinal position, the axial direction of the first through aperture 35 is substantially parallel to the length direction of the sub-channel 112, so the sub-channel 112 is opened. Therefore, the high pressure gas in the channel 12 produces suction to the sub-channel 112. Since the sandbox 20 is internally connected to the sub-channel 112, the sand in the sandbox 20

is mixed with high pressure gas in the sub-channel 112 along the direction of arrow 221 and is injected together to the outside of the main body 11 via the channel 12.

[0029] As shown in FIG. 4, in the lateral position, the axial direction of the first through aperture 35 is substantially perpendicular to the length direction of the sub-channel 112, so the sub-channel 112 is cut-off by the surface of the first valve rod 33. Therefore, the high pressure gas in the channel 12 does not make effect on the sandbox 20, and the sand of the sandbox 20 naturally does not enter the channel 12.

[0030] In other words, the first control valve 31 controls whether the sand in the sandbox 20 enters the channel 12 or not.

[0031] Next, please refer to FIGS. 2 and 4. The main body 11 has a protruding portion 114, the protruding portion 114 and the sandbox 20 are disposed on either side of the main body 11, and another sub-channel 112 extends through the interior of the protruding portion 114. Furthermore, the second control valve 40 is composed of a second valve rod 42 and a connector 50. The second valve rod 42 is substantially identical with the first valve rod 33, and also has a second knob 41, a second through aperture 44 and a second O ring 45. The connector 50 has an inserting portion 51, and the inserting portion 51 is a round tube and has an inner chamber 52.

[0032] When the connector 50 is sleeved onto the protruding portion 114, and the second valve rod 42 passes through the protruding portion 114 and the connector 50. Moreover, a second pin 43 is inserted into a portion of the second valve rod 42 exposed outside the connector 50, therefore the connector 50 can be prevented from leaving the protruding portion 114 without affecting the second knob 41 to drive the second valve rod 42 to rotate relative to the connector 50. Additionally, a baffle 53 protrudes from the surface of the connector 50, since the second pin 43 limits the movement of the second valve rod 42 back and forth in the longitudinal and lateral positions, the second O ring 45 touches the protruding portion 114 (or the connector 50) and also has a sealing effect that prevents pressure leakage.

[0033] An opening of a hose 23 is jacketed onto the inserting portion 51, and the inner chamber 52 of the inserting portion 51 is connected to the hose 23. Another opening of the hose 23 is connected to a rigid tube 24 inserted into the sand pile 25 (see FIG. 1).

[0034] When the second valve rod 42 is at the longitudinal position, the axial direction of the second through aperture 44 is also parallel to the length direction of the sub-channel 112, so the sub-channel 112 is opened. The high pressure gas in the channel 12 generates suction to the sand pile 25 (see FIG. 1) through the hose 23 and the rigid tube 24, so that the sand particles are mixed with the high pressure gas and sprayed out of the main body 11 via the channel 12 as the direction of the arrow 251.

[0035] As shown in FIG. 3, when the second valve rod 42 is at the lateral position, the axial direction of the second through aperture 44 is substantially perpendicular to the length direction of the sub-channel 112, therefore the sub-channel 112 is cut-off by the surface of the second valve rod 42. The high pressure gas is blocked by the second valve rod 42 and has no effect on the sand pile 25 (see FIG. 1), and the sand naturally does not enter the channel 12 via the hose 23.

[0036] Basically, the second control valve 40 is the controller that controls the high pressure gas in the channel 12 to extract the sand pile 25 (see FIG. 1) through the hard tube and the hose 23.

[0037] Even the first control valve 31 and the second control valve 40 are independent of each other and can be turned on and off respectively, but simultaneously turning on or off the first and second control valves 31, 40 should still be applied within range of the present invention.

[0038] Although the present invention has been explained in relation to its preferred embodiment, it is to be understood that many other possible modifications and variations can be made without departing from the spirit and scope of invention as hereinafter claimed.

What is claimed is:

1. A sand source selecting structure for a sandblasting gun comprising:

a main body;
a channel provided in the main body, for passing a high pressure gas;
at least two sub-channels provided in the main body respectively connected to the channel;
a sandbox mounted on the main body connected to the channel through each of the sub-channels;
at least one supply tube;
a first control valve installed in the main body, for connecting the sandbox and at least one of the sub-channels of the channel; and
a second control valve installed in the main body, for connecting the channel and another sub-channel of the supply tube.

2. The sand source selecting structure of a sandblasting gun as claimed in claim 1, wherein the first control valve further comprises a first valve rod with a first through aperture, the first valve rod is placed in the main body, the first through aperture is parallel or perpendicular with the sub-channel, and the first control valve controls the sub-channel.

3. The sand source selecting structure of a sandblasting gun as claimed in claim 2, wherein the first control valve further comprises a knob and a pin, the knob and the pin are respectively disposed at two ends of the first valve rod, and the pin engages a baffle of the main body to limit the first valve rod.

4. The sand source selecting structure of a sandblasting gun as claimed in claim 2, wherein a first O ring is disposed around the first through aperture, and the first O ring makes contact with the first valve rod and the main body for a sealing purpose.

5. The sand source selecting structure of a sandblasting gun as claimed in claim 1, wherein the second control valve comprises:

a second valve rod with a second through aperture; and
a connector having an inserting portion with an inner chamber, the inserting portion engaging the supply tube, and the inner chamber is connected to the supply tube and the sub-channel;

wherein when the connector jackets onto a protruding portion of the main body, the second valve rod passes the protruding portion and the connector, the second through aperture is parallel or perpendicular with the sub-channel, and the second control valve controls the sub-channel.

6. The sand source selecting structure of a sandblasting gun as claimed in claim 5, wherein the second control valve

further comprises a second knob and a second pin, the second knob and the second pin are disposed at two ends of the second valve rod, the second pin engages with a baffle of the of the connector to limit the second valve rod.

7. The sand source selecting structure of a sandblasting gun as claimed in claim 5, wherein a second O ring is disposed around the second through aperture, and the second O ring makes contact with the second valve rod and the protruding portion for a sealing purpose.

* * * * *