
ESP32-S3-Touch-LCD-4.3

ESP32-S3N8R8

Type C USB

ESP32-S3-Touch-LCD-4.3

Overview

Introduction

ESP32-S3-Touch-LCD-4.3 is a microcontroller development board with 2.4GHz WiFi and

BLE 5 support, and integrates high-capacity Flash and PSRAM. The onboard 4.3-inch

capacitive touch screen can smoothly run GUI programs such as LVGL. Combined with

various peripheral interfaces, it is suitable for the quick development of the HMI and other

ESP32-S3 applications.

Features

Equipped with Xtensa 32-bit LX7 dual-core processor, up to 240MHz main frequency.

Supports 2.4GHz Wi-Fi (802.11 b/g/n) and Bluetooth 5 (LE), with an onboard antenna.

Built-in 512KB of SRAM and 384KB ROM, with onboard 8MB PSRAM and 8MB Flash.

Onboard 4.3inch capacitive touch display, 800×480 resolution, 65K color.

Supports capacitive touch control via I2C interface, 5-point touch with interrupt support.

Onboard CAN, RS485, I2C interface, and TF card slot, integrate full-speed USB port.

Supports flexible clock, module power supply independent setting, and other controls to realize low power consumption in
different scenarios.

Hardware Description

Onboard Interface

UART Port : Use CH343P chip for USB to UART for connecting the UART_TXD(GPIO43) and UART_RXD(GPIO44) pin of
the ESP32-S3. which is for firmware programming and log printing.

USB Connector: GPIO19(DP) and GPIO20(DN) are the USB pins of ESP32-S3, which can be connected the cameras with UVC
protocol. For more details about the UVC driver, you can refer to this link .

Sensor interface: This interface is connected to GPIO6 as ADC, which can be connected to Sensor kit .

CAN Interface: can be used as a USB interface too, you can switch CAN/USB with the FSUSB42UMX chip. The USB interface
is used by default (when the USB_SEL pin of FSUSB42UMX is set to LOW).

I2C interface: ESP32-S3 provides multi-lane hardware, currently uses GPIO8(SDA) and GPIO9(SCL) pins as I2C bus for
loading IO expansion chip, touch interface and I2C interface.

RS485 interface: the development board onboard RS485 interface circuits for directly connecting to RS485 device
communication, and support automatic switching of RS485 circuit transceiver mode.

PH2.0 battery header: The development board utilizes the efficient charge and discharge management chip CS8501. It can boost
a single-cell lithium battery to 5V. Currently, the charging current is set at 580mA, and users can modify the charging current by
replacing the R45 resistor. For more details, you can refer to Schematic diagram .

PIN Definition

ESP32-S3-WROOM-x LCD USB SD UART CAN Sensor
GPIO0 G3
GPIO1 R3
GPIO2 R4
GPIO3 VSYNC
GPIO4 TP_IRQ
GPIO5 DE
GPIO6 AD
GPIO7 PCLK
GPIO8 TP_SDA
GPIO9 TP_SCL

GPIO10 B7
GPIO11 MOSI
GPIO12 SCK
GPIO13 MISO
GPIO14 B3
GPIO15 RS485_TX
GPIO16 RS485_RX
GPIO17 B6
GPIO18 B5

GPIO19 USB_DN CANRX

GPIO20 USB_DP CANTX

GPIO21 G7
GPIO38 B4
GPIO39 G2
GPIO40 R7
GPIO41 R6
GPIO42 R5
GPIO43 UART_TXD
GPIO44 UART_RXD
GPIO45 G4
GPIO46 HSYNC
GPIO47 G6
GPIO48 G5
CH422G - - - - - -
EXIO1 TP_RST
EXIO2 DISP
EXIO3 LCD_RST
EXIO4 SD_CS

EXIO5 USB_SEL(LOW) USB_SEL(HIGH)

Hardware Connection

ESP32-S3-Touch-LCD-4.3 comes with an onboard automatic download circuit. The Type C port, marked UART, is used for
program downloads and logging. Once the program is downloaded, run it by pressing the RESET button.

Please keep other metals or plastic material away from the PCB antenna area during use.

The development board uses a PH2.0 connector to extend ADC, CAN, I2C, and RS485 peripheral pins. Utilize a PH2.0 to
2.54mm DuPont male connector to link sensor components.

As the 4.3-inch screen occupies most GPIO pins, you can use a CH422G chip to expand IO for functions like reset and backlight
control.

The CAN and RS485 peripheral interfaces connect to a 120ohm resistor using jumper caps by default. Optionally, connect NC to
cancel the termination resistor.

The SD card employs SPI communication. Note that the SD_CS pin needs to be driven by the EXIO4 of the CH422G.

Other Notes

The average frame rate for running the LVGL benchmark example on a single core in ESP-IDF v5.1 is 41 FPS. Before
compilation, enabling 120M PSRAM is necessary.

The PH2.0 lithium battery socket only supports a single 3.7V lithium battery. Do not use multiple sets of battery packs for
charging and discharging simultaneously. It's recommended to use a single-cell battery with a capacity below 2000mAh.

Dimensions

Environment Setting

The software framework for ESP32 series development boards is completed, and you can use CircuitPython, MicroPython, and

C/C++ (Arduino, ESP-IDF) for rapid prototyping of product development. Here's a brief introduction to these three development

approaches:

Official C/C++ library installation:

ESP32 series Arduino development tutorial.

ESP32 series ESP-IDF development tutorial.

MicroPython is an efficient implementation of the Python 3 programming language. It includes a small subset of the Python
standard library and has been optimized to run on microcontrollers and resource-constrained environments.

You can refer to development documentation for MicroPython-related application development.

The GitHub library for MicroPython allows for recompilation for custom development.

Environment setting is supported on Windows 10. Users can select Arduino/Visual Studio Codes (ESP-IDF) as IDE to develop.
For Mac/Linux, users can refer to official introduction .

ESP-IDF

ESP-IDF installation

Arduino

Download and install Arduino IDE .

Install ESP32 on the Arduino IDE as shown below, and you can refer to this link .

Fill in the following link in the Additional Boards Manager URLs section of the Settings screen under File -> Preferences and
save.

https://raw.githubusercontent.com/espressif/arduino-esp32/gh-pages/package_esp32_index.json

Search esp32 on Board Manager to install, and restart Arduino IDE to take effect.

3. Open the Arduino IDE and note that Tools in the menu bar selects the corresponding Flash (8MB) and enables PSRAM (8MB

OPI), as shown in the following figure.

Library Installation

TFT_SPI and lvgl libraries require configuration files after installation. It's recommended to directly use the
ESP32_Display_Panel, ESP32_IO_Expander in the s3-4.3-libraries , and lvgl folders, along with the ESP_Panel_Conf.h and
lv_conf.h files, and copy them to the directory C:\Users\xxxx\Documents\Arduino\libraries. Please note that "xxxx" represents
your computer username.

After copying:

Sample Demo

Arduino

Note: Before using the Arduino demos, please check whether the Arduino IDE environment and download settings are correctly
configured, for details, please check the Arduino Configure.

UART_Test

Take UART_Test as an example, UART_Test can be used for testing UART interface. This interface can connect to GPIO43(TXD)

and GPIO44(RXD) as UART0.

After programming the code, connect the USB to Type-C cable to the "UART" Type-C interface. Open the serial port debugging

assistant , and send a message to ESP32-S3-Touch-LCD-4.3. ESP32-S3-Touch-LCD-4.3 will return the received message to the
serial port debugging assistant. Note that you need to select the correct COM port and baud rate. Check "AddCrLf" before sending
the message.

Sensor_AD

Sensor_AD example is used to test the usage of the Sensor AD socket. This interface connects to GPIO6 for ADC usage and can be

connected to Sensor kits and so on.

After burning the code, connect the Sensor AD socket to "HY2.0 2P to DuPont male head 3P 10cm". You can then open the serial
port debugging assistant to observe the data read from the AD pin. "ADC analog value" represents the analog value read from the
ADC, while "ADC millivolts value" represents the ADC value converted to millivolts.

When shorting the AD pin with the GND pin, the read value is as shown in the diagram below:

When shorting the AD pin with the 3V3 pin, the read value is as shown in the figure below:

I2C_Test

I2C_Test example is for testing I2C socket, and this interface can connect to GPIO8(SDA) and GPIO9(SCL) for I2C

communication.

Using this example for driving BME680 environment sensor, and before editing, you need to install the "BME68x Sensor library"
through LIBRARY MANAGER.

After programming the code, the I2C socket is connected to "HY2.0 2P to DuPont male head 4P 10cm" and connected to the
BME680 environmental sensor . This sensor is capable of detecting temperature, humidity, atmospheric pressure, and gas levels.
By opening the serial port debugging assistant, you can observe: ① for temperature (°C), ② for atmospheric pressure (Pa), ③ for
relative humidity (%RH), ④ for gas resistance (ohms), and ⑤ for the sensor's status.

RS485_Test

RS485_Test example is for testing RS-485 socket, and this interface can connect to GPIO15(TXD) and GPIO16(RXD) for RS485

communication.

This demo require USB TO RS485 (B) . After programming the code, the RS-485 socket can connect to USB TO RS485 (B)
through a "HY2.0 2P to DuPont male head 2P 10cm" and then connect it to the PC.

Open the serial port debugging assistant and send an RS485 message to ESP32-S3-Touch-LCD-4.3. The ESP32-S3-Touch-
LCD-4.3 will return the received message to the serial port debugging assistant. Ensure to select the correct COM port and baud
rate. Before sending the message, check "AddCrLf" to add a carriage return and line feed.

SD_Test

The SD_Test example is used to test the SD card socket. Before using it, insert an SD card.

After burning the code, the ESP32-S3-Touch-*LCD-4.3 will recognize the type and size of the SD card and proceed with file
operations such as creating, deleting, modifying, and querying files.

TWAItransmit

TWAItransmit example is for testing CAN socket, and this interface can connect to GPIO20(TXD) and GPIO19(RXD) for CAN

communication.

After programming the code, using the "HY2.0 2P to DuPont male head 2P red-black 10cm" cable, and connect the CAN H and
CAN L pins of the ESP32-S3-Touch-LCD-4.3 to the USB-CAN-A .

Once you open the serial port debugging assistant, you should observe that the Esp32-s3-touch-lcd-4.3 has started sending CAN
messages.

Connect the USB-CAN-A to the computer and open the USB-CAN-A_TOOL_2.0 upper computer software . Select the
corresponding COM port, set the baud rate to 2000000 as shown in the image, and set the CAN baud rate to 50.000Kbps. This
configuration will allow you to view the CAN messages sent by the Esp32-s3-touch-lcd-4.3.

TWAIreceive

TWAIreceive example is for testing CAN socket, and this interface can connect to GPIO20(TXD) and GPIO19(RXD) for CAN

communication.

After uploading the code, use the "HY2.0 2P to DuPont male head 2P red-black 10cm" cable to connect the CAN H and CAN L
pins of the ESP32-S3-Touch-LCD-4.3 to the USB-CAN-A .

Connect the USB-CAN-A to the computer and open the USB-CAN-A_TOOL_2.0 upper computer software . Select the
corresponding COM port, set the port baud rate to 2000000 as indicated in the image, and set the CAN baud rate to 500.000Kbps.
With these settings, you'll be able to send CAN messages to the Esp32-s3-touch-lcd-4.3.

Open the serial port debugging assistant, and you should observe that the Esp32-s3-touch-lcd-4.3 has started receiving CAN
messages. If there are any reception errors, try resetting the devices multiple times and restarting the software. Please be patient
and allow some time for the reception process.

lvgl_Porting

lvgl_Porting example is for testing RGB touch screen.

After uploading the code, you can try to touch it. Also, we provide LVGL porting examples for users (If there's no screen response
after burning the code, check if the Arduino IDE -> Tools settings are correctly configured: choose the corresponding Flash (8MB)
and enable PSRAM (8MB OPI)).

DrawColorBar

DrawColorBar example is for testing RGB screen.

After uploading the code, you should observe the screen displaying bands of blue, green, and red colors. If the screen shows no
response after burning the code, check if the Arduino IDE -> Tools settings are correctly configured: choose the corresponding
Flash (8MB) and enable PSRAM (8MB OPI).

ESP-IDF

Note: Before using ESP-IDF examples, please ensure that the ESP-IDF environment and download settings are correctly
configured. You can refer to the ESP-IDF environment setting for specific instructions on how to check and configure them.

esp32-s3-lcd-4.3-b-i2c_tools

esp32-s3-lcd-4.3-b-i2c_tools example is used to test the I2C socket by scanning various I2C device addresses.

After uploading the code, connect the I2C device (for this example, we're using the BME680 Environmental Sensor) to the

corresponding pins on the ESP32-S3-Touch-LCD-4.3. Open the serial port debugging assistant , select a baud rate of 115200,
and open the corresponding COM port for communication (make sure to disable ESP-IDF's COM port first, as it might occupy the
COM port and prevent serial port access).

Press the Reset key of the ESP32-S3-Touch-LCD-4.3, SSCOM prints message, input "i2cdetect" as shown below. "77" is printed,
and the I2C socket test passes.

uart_echo

uart_echo example is for testing RS485 socket.

After uploading the code, connect the USB TO RS485 and ESP32-S3-Touch-LCD-4.3 through A and B pins. Open SSCOM to
select the corresponding COM port for communication after connecting USB TO RS485 to the PC.

Select the baud rate as 115200 as shown below. When you send any character, it gets looped back and displayed. That's a good
indication that the RS485 socket is working as expected.

twai_network_master

twai_network_master example is for testing CAN socket.

After uploading the code, use the "HY2.0 2P to DuPont male head 2P red-black 10cm" cable to connect the CAN H and CAN L
pins of the ESP32-S3-Touch-LCD-4.3 to the USB-CAN-A .

Connect the USB-CAN-A to the computer and open the USB-CAN-A_TOOL_2.0 upper computer software . Select the
corresponding COM port, set the port baud rate to 2000000 as shown in the image, and set a custom baud rate of 25.000Kbps
(adjusting phase buffer 1 and phase buffer 2 if necessary).

Pressing the Reset button on the ESP32-S3-Touch-LCD-4.3 causes data to be printed in the data field of USBCANV2.0,
confirming the successful test of the CAN socket.

demo1

demo1 example is for testing the display effect of the screen.

Resource

Document

Schematic diagram

ESP32 Arduino Core's documentation

arduino-esp32

ESP-IDF

ESP32-S3-Touch-LCD-4.3 3D Drawing

Demo

ESP32-S3-Touch-LCD-4.3_libraries

Sample demo

Software

sscom serial port assistant

Arduino IDE

UCANV2.0.exe

Datasheet

ESP32-S3 Series Datasheet

ESP32-S3 Wroom Datasheet

CH343 Datasheet

TJA1051

FAQ

Question:ESP32-S3-Touch-LCD-4.3 CAN reception failure?

 Answer:

① Restart the COM port in UCANV2.0.exe and press the ESP32-S3-Touch-LCD-4.3 reset button multiple times.

② Uncheck DTR and RTS in the serial port debugging assistant.

Question:ESP32-S3-Touch-LCD-4.3 shows no response after programming an Arduino program for RGB screen

display?

 Answer:

If there's no screen response after programming the code, check whether the correct configurations are set in Arduino IDE ->

Tools: Choose the corresponding Flash (8MB) and enable PSRAM (8MB OPI).

Question:ESP32-S3-Touch-LCD-4.3 fails to compile an Arduino demo for the RGB screen and shows errors?

 Answer:

Check if the "s3-4.3-libraries" library is installed. Please refer to installation steps.

Support

Technical Support

If you need technical support or have any feedback/review, please click the Submit Now

button to submit a ticket, Our support team will check and reply to you within 1 to 2

working days. Please be patient as we make every effort to help you to resolve the issue.

Working Time: 9 AM - 6 AM GMT+8 (Monday to Friday)

Submit Now

To Top

Overview
Introduction
Features

Hardware Description

Onboard Interface

Hardware Connection

Other Notes
Dimensions

Environment Setting

ESP-IDF

Arduino

Library Installation

Sample Demo
Arduino

UART_Test

Sensor_AD
I2C_Test

RS485_Test

SD_Test

TWAItransmit

TWAIreceive
lvgl_Porting

DrawColorBar

ESP-IDF

esp32-s3-lcd-4.3-b-i2c_tools

uart_echo
twai_network_master

demo1

Resource
Document
Demo

Software

Datasheet

FAQ

Support

Login / Create Account

SearchRaspberry Pi Raspberry Pi AI AI Displays Displays IoT IoT Robotics Robotics MCU/FPGA MCU/FPGA SupportSupport ICIC

https://files.waveshare.com/wiki/ESP32-S3-Touch-LCD-4.3/ESP32-S3-Touch-LCD-4.3-Sch.pdf
https://docs.espressif.com/projects/arduino-esp32/en/latest/index.html
https://github.com/espressif/arduino-esp32
https://github.com/espressif/esp-idf
https://files.waveshare.com/wiki/ESP32-S3-Touch-LCD-4.3/ESP32-S3-Touch-LCD-4in3%203D%20Drawing.zip
https://files.waveshare.com/wiki/ESP32-S3-Touch-LCD-4.3/S3-4.3-libraries.zip
https://files.waveshare.com/wiki/ESP32-S3-Touch-LCD-4.3/Esp32-s3-touch-lcd-4.3-code.zip
https://files.waveshare.com/upload/b/b3/Sscom5.13.1.zip
https://www.arduino.cc/en/software
https://files.waveshare.com/wiki/ESP32-S3-Touch-LCD-4.3/Progrom(%E4%B8%AD%E6%96%87%EF%BC%89.zip
https://files.waveshare.com/wiki/ESP32-S3-Touch-LCD-4.3/Esp32-s3_datasheet_en.pdf
https://files.waveshare.com/wiki/ESP32-S3-Touch-LCD-4.3/Esp32-s3-wroom-1_wroom-1u_datasheet_en.pdf
https://files.waveshare.com/upload/a/a3/CH343DS1-en.PDF
https://www.nxp.com/docs/en/data-sheet/TJA1051.pdf
https://files.waveshare.com/wiki/ESP32-S3-Touch-LCD-4.3/Esp32-s3-touch-lcd-lib.zip

